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ABSTRACT 

It is evident that military applications for 21st century will be highly complex, multivariable systems. 
Designing optimal controllers for such applications will require the use of mathematical models which 
describe the complexity of the underlying processes as accurately as possible. For robustness it is 
essential that these models include the uncertainties in the estimated process dynamics and trajectories. 
Controllers resulting from optimal control strategies (like LQG, H2, H∞) will usually be of very high order 
and that can cause implementation and computational problems. Some of these problems can be overcome 
by using controllers that are of lower order and restricted structure.  
The subject of restricted structure controller design and performance assessment is relatively new and 
enables the expected performance to be assessed against a much more realistic criterion. That is, the 
performance figures take into account the limitations of the existing control system structure, and hence 
provide a more accurate measure of the possible performance improvement.  
However, the design and/or tuning of restricted-structure controllers in order to provide the performance 
comparable with full-order solutions is still a very contentious issue. Added to this is the need to achieve 
robust properties and performance specifications required by military applications. Very few methods for 
designing restricted-structure controllers exist that allow the performance and robustness objectives to be 
combined into one relatively simple optimisation problem. This lecture presents an LQG/H2-based 
method that tackles the above mentioned issues.  
This work also provides the exciting possibility of enabling the multivariable structures of systems to be 
assessed.  Thus for example, it is possible to check whether a diagonal multivariable controller, upper 
triangular, lower triangular or sparser structures might be almost as good as a full multivariable control 
law.  This technique provides advantages over the commonly used technique of so called relative gain 
array for judging the best structure for a multivariable system. 
All these techniques are applicable to continuous or discrete-time linear systems, although the nonlinear 
behaviour can readily be accommodated in the design through the use of multiple-model strategy. This 
lecture, however, will also introduce a control law that is derived for the control of nonlinear, possibly 
time-varying systems. The solution for this Nonlinear Generalized Minimum Variance control law is 
original and was obtained using a simple operator representation of the process.  The quadratic cost 
index involves both error and control signal costing terms.  The controller obtained is simple to implement 
and includes an internal model of the process.  In one form it might be considered a nonlinear version of 
the Smith Predictor. 

1.0 INTRODUCTION 

The design and performance assessment of optimal controllers (Kwakernaak and Sivan, 1972 [1], 
Desborough and Harris 1993 [2], Uduehi and Grimble 2001 [3]) is considered as well as the ways in 
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which robustness properties can be modified and assessed. The minimization of quadratic cost functions 
for stochastic linear systems in such a way that the robustness margins are improved is of interest. There 
are of course well known guaranteed robustness properties for systems with state feedback (Anderson and 
Moore 1971 [4], Safonov and Athans 1986 [5], Doyle 1978 [6]) and in some problems these properties 
can be recovered using a loop transfer recovery approach ([7],[8],[9],[10],[11],[12]).   However, more 
direct methods of tuning robustness properties would be valuable (Doyle and Stein, 1981 [13]).  This is 
explored for both full-order optimal output feedback controllers and for low order (restricted structure) 
optimal solutions.    

Two aspects of the design of full-order and restricted structure (RS) optimal controllers are considered in 
the following. The first involves robustness improvement and the second is concerned with the noise 
rejection properties. An LQG criterion is to be optimized but the usual robustness and noise rejection 
properties will not hold if the controller structure is limited to say a PID or a low order lead-lag form.  
Grimble (1999 [14], 2000 [15]) introduced a polynomial systems approach to restricted structure optimal 
control design and this is the philosophy followed here. However, the design of such controllers 
previously focussed on performance issues and the robustness/noise-rejection aspects were not considered 
in any detail. The strategy for robustness improvement is to add a fictitious signal and a sensitivity costing 
term in the criterion. This enables the penalty on sensitivity to be directed at modifying the robustness 
properties. The normal LQG cost-index does of course include error and control signals that depend upon 
the sensitivity functions.  However, this does not enable these sensitivity terms to be costed in a particular 
way. The proposed robustness weighting term gives free choice of the weighting function and enables the 
H2 norm of a weighted sensitivity function to be minimized. This relates to the definition of a so-called 
Dual Criterion (Grimble, 1986 [16]), but the results here are focussed on the design issues and they use 
what might be termed a Kucera polynomial systems approach, (1980 [17]). The frequency-domain 
polynomial systems approach is particularly helpful when determining the frequency response behaviour 
to noise and disturbance signals (Grimble, 1994 [18]).  

The above control algorithms and methodology are based on the linearized description of the process and 
are valid in a particular operating point. The aim in the following is to introduce a controller for nonlinear 
multivariable, possibly time-varying, processes. This Nonlinear GMV (NGMV) control law is related to 
the family of LQG designs but is based more on the rich heritage of minimum variance controls.  Åström 
introduced the Minimum Variance (MV) controller assuming the linear plant was minimum phase and 
later derived the MV controller for processes that could be non-minimum phase (Åström 1979 [19]).  The 
latter was guaranteed to be stable on non-minimum phase processes, whereas the former was unstable.  
Hastings-James (1970 [20]) and later Clarke and Hastings-James (1971, [21]), modified the first of these 
control laws by adding a control costing term.  This was termed a Generalized Minimum Variance (GMV) 
control law and enabled non-minimum phase processes to be stabilized, although when the control 
weighting tended to zero the control law reverted to the initial algorithm of Åström, which was unstable.  
However, the control law had similar characteristics to LQG design in some cases and was much simpler 
to implement.  This simplicity was exploited very successfully in the so-called generalized MV self-tuning 
controller introduced by Clarke and Gawthrop (1975, [22]). The control of nonlinear non-minimum phase 
linear systems using a GMV type algorithm was considered by Grimble (1981 [23]).  The use of GMV 
control laws for linear systems designs was reviewed in Grimble (1988 [24]).  The use of dynamic cost 
weightings in the GMV cost index (1994 [18]) provided additional flexibility and the dynamic costing 
solution was exploited to obtain a Generalized H∞ controller (Grimble 1993 [25]).  All of these results 
were applicable to linear discrete-time stochastic processes. 

The NGMV control law uses a similar stochastic framework but generalizes and extends these results to 
account for nonlinear system behaviour. The structure of the system was defined so that a simple 
controller structure and solution are obtained.  When the system is linear the results revert to those for the 
GMV controller referred to above (Grimble 2001 [26]).  There is some loss of generality in assuming the 
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reference and disturbance models are represented by linear subsystems.  However, the plant model can be 
in a very general nonlinear operator form, which might involve state-space, transfer operators or even 
nonlinear function look up tables.  That is, the input sub-system to the plant might include valves or a 
servo-system that has no traditional equation based model.  The input nonlinear subsystem can be a black 
box.  No state space or operator structure is needed.  The optimal solution reveals all that is needed is a 
method of computing the output from such subsystem given a control input.   If on the other hand an 
equation based model is available it may be used directly.  For this reason the nonlinear part of the plant is 
represented in operator (unstructured form) for most of the analysis. The nonlinear dynamic terms, in the 
plant, only need to be open loop stable and can be very complicated.  The ability to introduce very general 
plant structures, without formal models, is a major advantage of the method. 

For linear systems stability is ensured when the combination of a control weighting function and an error 
weighted plant model is strictly minimum phase.  For nonlinear systems a related operator equation must 
have a stable inverse.  It is shown that if there exists say a PID controller that will stabilize the nonlinear 
system, without transport delay elements, then a set of cost weightings can easily be defined to guarantee 
the existence of this inverse and thereby ensure the stability of the closed loop. If the plant is open-loop 
stable the solution can be realized in a particularly simple form which relates to the well known Smith 
Predictor for systems with significant transport delays.  This has the advantage of providing some 
confidence in the practical utility of the solution and also introduces what might be termed an extension of 
these Smith controllers for nonlinear plants.  A so-called Nonlinear Smith Predictor will therefore be 
introduced.  The main advantage over other nonlinear control design methods (Isidori 1995 [27]) is the 
simplicity of the solution. 

2.0 SYSTEM MODEL  

The system shown in Fig. 1 is for the time being assumed to be linear, continuous-time and single-input, 
single-output.  The external white noise sources drive colouring filters which represent the reference 
Wr(s), measurement noise Wn(s), robustness modification Wp(s) and disturbance Wd(s) subsystems. The 
robustness model does not exist physically but is introduced for design modification. The system 
equations become: 

Input disturbance: d s W s sd( ) ( ) ( )= ξ  (2.1) 

Robustness signal: ( ) ( ) ( )pp s W s sη=  (2.2) 

Output:  y(s) = d(s) + p(s) + W(s)u(s)  (2.3) 

Reference: r s W s sr( ) ( ) ( )= ζ  (2.4) 

Tracking error: e(s) = r(s) - y(s) (2.5) 

Observations: ( ) ( ) ( )z s y s n s= +  (2.6) 

Measurement noise: ( ) ( ) ( )nn s W s sω=  (2.7) 

Control signal: 0( ) ( )( ( ) ( ))u s C s r s z s= −  (2.8) 

The system transfer functions are all assumed to be functions of the Laplace transform complex number in 
the complex frequency domain.  For notational simplicity the arguments in W(s) and the other models are 
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omitted. 

Figure 1:  Single Degree of Freedom Unity Feedback Control System with  
Measurement Noise, Reference and Disturbance Models Assumptions 

 
Assumptions: 

• The white noise sources, ξ, ω, η  and ζ are zero-mean and mutually statistically independent. The 
intensities of these signals are without loss of generality taken to be of value unity. 

• The system W is assumed free of unstable hidden modes and the reference Wr , noise Wn , robustness 
Wp and disturbance Wd subsystems are asymptotically stable.  

The following expressions may easily be derived for the output, error, observations, controller input, 
control and sensitivity costing signals: 

Output :          1 1
0 0 0( ) (1 ) ( ( ) ( )) (1 ) ( ( ) ( ))y s WC WC r s n s WC d s p s− −= + − + + +  (2.9) 

Error :                      1 1
0 0 0( ) ( ) ( ) (1 ) ( ( ) ( ) ( )) (1 ) ( )e s r s y s WC r s d s p s WC WC n s− −= − = + − − + +  (2.10) 

Observations:                 1 1
0 0 0( ) (1 ) ( ) (1 ) ( ( ) ( ) ( ))z s WC WC r s WC d s n s p s− −= + + + + +  (2.11) 

Controller input :             1
0 0( ) ( ) ( ) (1 ) ( ( ) ( ) ( ) ( ))e s r s z s WC r s d s n s p s−= − = + − − −  (2.12) 

Control signal:               1
0 0( ) (1 ) ( ( ) ( ) ( ) ( ))u s WC C r s d s n s p s−= + − − −  (2.13) 

Robustness signal: 1
0( ) (1 ) ( )h s WC p s−= +   (2.14) 

These equations include the following sensitivity operators: 
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Sensitivity:    S WC= + −( )1 0
1  (2.15) 

Complementary sensitivity : T S WC S= − =1 0  (2.16) 

Control sensitivity: M C S C WC= = + −
0 0 0

11( )  (2.17) 

The system shown in Fig. 1 may be represented in polynomial form (Kailath 1980 [28]), where the system 
transfer functions are written as: 

System : W A B= −1  (2.18) 

Reference generator: W A Er = −1  (2.19) 

Input disturbance: W A Cd d= −1  (2.20) 

Measurement noise: 1
n nW A C−=  (2.21) 

Robustness signal model: 1
p pW A C−=  (2.22) 

There is no loss of generality in assuming these models have a common denominator A polynomial. The 
various polynomials are not necessarily coprime but the system transfer function is assumed to be free of 
unstable hidden modes. The coprime representation of the system is denoted by 1

0 0A B− , where B=B0U0 
and A=A0U0. 

The spectrum of the signal r(s)-d(s)-n(s)-p(s) in equations (2.12) and (2.13) is denoted by Φ ff s( ) and a 
generalised spectral-factor Yf may be defined from this spectrum, using: 

 *
f f ff rr dd nn ppY Y = Φ = Φ + Φ + Φ + Φ  (2.23) 

In polynomial form Y A Df f= −1 .  The disturbance model is assumed to be such that Df is strictly Hurwitz 
and satisfies: 

 * * * * *
f f d d n n p pD D EE C C C C C C= + + +  (2.24) 

The role of the robustness model Wp may now be explained since it is one of the components in the 
combined signal spectrum ffΦ  defined in (2.23).  Clearly, if ppΦ  is dominant then the spectrum 

ff ppΦ → Φ . This implies that  
0 0

*
e e ppS SΦ → Φ and this spectrum  will provide the robustness term 

(suitably weighted) introduced in the cost function, in the next section. 

3.0 LQG CRITERION AND RESTRICTED STRUCTURE CONTROL  

The LQG cost-function to be minimized (Youla et al 1976 [29]) is defined as: 
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0 0

1 { ( ) ( ) ( ) ( ) ( ) ( )}
2 c ee c uu c e e

D
J Q s s R s s P s s ds

jπ
= Φ + Φ + Φ∫  (3.1) 

where Qc, Rc, Pc represent dynamic weighting elements, acting on the spectra of the error e(t),  feedback 
control u(t) and controller input e0(t) signals.  The Rc weighting term is assumed to be positive definite 
and Qc , Pc are assumed to be positive-semidefinite on the D contour of the s-plane. The robustness 
weighting term can be motivated as in the dual criterion results of Grimble (1986 [30]). The error, control 
and robustness weightings can be written in polynomial form as: 

 
*

* *
q qcn

c
q q q q

B BQQ
A A A A

= = ,      
*

* *
cn r r

c
r r r r

R B BR
A A A A

= =    and       
*

* *
p pcn

c
q q q q

B BPP
A A A A

= =   (3.2) 

where Aq is a Hurwitz polynomial and Ar is a strictly Hurwitz polynomial (Grimble and Johnson 1988 
[31]).  The problem will be to minimize the above criterion with the controller chosen to have a specified 
structure [15]. The Pc weighting term represents a robustness weighting to be explained later. For later use 
let the weightings be rewritten using the common denominator, so that: 

 
* *

+
= + = =cn cn cn

c c c
q q q q

Q P QQ Q P
A A A A

 or * * */( ) /( )= =c cn q q r r cn w wQ Q A A A A Q A A  

where *= =cn cn r r w q rQ Q A A and A A A  . Similarly for the control weighting: 

 

* * *
* /( ) /( )= = =cn

c cn q q r r cn w w
r r

RR R A A A A R A A
A A

 

where *=cn cn q qR R A A . 

Theorem 3.1: Restricted Structure Single Degree of Freedom LQG Control Problem 
Consider the LQG error and control weighted criterion defined in (3.1), and the system introduced in §2. 
The conditions that determine the LQG controller of restricted structure are derived below.  The derivation 
includes the robustness/sensitivity costing and coloured measurement noise model. These terms were not 
considered in the previous polynomial approaches to the restricted structure control design problem. The 
cost-function to be minimised was defined in as, 

 
0 0

1 { }
2 c ee c uu c e e

D
J Q R P ds

jπ
= Φ + Φ + Φ∫   

Noting the independence of the noise sources and recalling (2.10) to (2.13) and the definitions for 
sensitivity in equations (2.15) to (2.17) obtain by substituting in (3.1) : 

 

* * * *

* * *

(1 ) (1 ) (1 ) (1 )1
2 (1 ) (1 )

c ff c ff

D c ff c nn nn c c nn

Q WM W M P WM M W
J ds

j R M M Q WM M W Q Qπ

⎧ ⎫− Φ − + − Φ −⎪ ⎪= ∫ ⎨ ⎬
+ Φ − − Φ − Φ − + Φ⎪ ⎪⎩ ⎭
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* * * *( ) ( )1

2 ( )
c c ff c ff c nn

D c ff c nn c ff c nn

W Q W R M M M W Q Q
J ds

j Q Q WM Q Qπ

⎧ ⎫+ Φ − Φ − Φ⎪ ⎪= ∫ ⎨ ⎬
− Φ − Φ + Φ − Φ⎪ ⎪⎩ ⎭

 (3.3) 

where c c cQ Q P= +  and this may be written in the alternative forms * *
+

= =cn cn cn
c

q q q q

Q Q PQ
A A A A

 or using a 

common denominator for the spectral factor: 

 * * */( ) /( )= =c cn q q r r cn w wQ Q A A A A Q A A  (3.4) 

where *
cn cn r rQ Q A A= .   Then define,  *( )fp c ff c nnW Q QΦ = Φ − Φ          (3.5) 

and ff rr dd nn ppΦ = Φ + Φ + Φ + Φ . 

The generalised spectral factors Yc and Yf  due to Shaked (1976 [32]) may now be defined, using: 

 * *
c c c cY Y W Q W R= +  (3.6) 

 *
f f ff rr dd nn ppY Y = Φ = Φ + Φ + Φ + Φ  (3.7) 

Completing the squares in equation (3.3) obtain: 

 

 *
0* * * *

1 {( )( ) }
2

fp fp
c f c f

D c f c f
J Y MY Y MY ds

j Y Y Y Yπ
Φ Φ

= − − + Φ∫  (3.8) 

where 
*

0 * *
fp fp

c ff c nn
c c f f

Q Q
Y Y Y Y

Φ Φ
Φ = Φ − Φ −  (3.9) 

Substituting in the spectral-factor expressions  (3.6) and (3.7), using the polynomial system models in 
equations (2.18) to (2.22), obtain 

 * * * * * *( ) /( )f f d d n n p pY Y EE C C C C C C AA= + + +  (3.10) 

 * * * * *( ) /( )c c cn cn w wY Y B Q B A R A A A A A= +  (3.11) 

where *( )= +cn cn cn r rQ Q P A A   and   *=cn cn q qR R A A       (3.12) 

To obtain the polynomial spectral-factors define the filter Df  and control Dc spectral factors from (3.6) 
and (3.7) respectively, as: 

 * * * * *
f f d d n n p pD D EE C C C C C C= + + +  (3.13) 

 * * *
c c cn cnD D B Q B A R A= +  (3.14) 

Recalling that Aq and Ar are normally chosen to be coprime, the generalized spectral factors may be 
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written in the form: 

 Y A D Y A Df f c c c= =− −1 1and    where   c wA AA=      and   Aw =Aq Ar 

The various terms in the criterion (3.1) may now be simplified by substituting from the polynomial system 
models in and the spectral factor results given above. 

 

* **
*

* * *( ) ( )
−

Φ = Φ − Φ = cn f f cn n n
fp c ff c nn

q q

Q D D Q C CBW Q Q
A A A AA

 

 

* * *
* * *

* */( ) ( )Φ = −cn f f cn n n r
fp c f

q q c f

Q D D Q C C AY Y B
AA AA D D

 (3.15) 

The measurement noise subsystem must be asymptotically stable and after cancellation of common terms 
may be written as: 1 1

0 0n n nA C A C− −= ,  where  0 0nA A A= . The following diophantine equations must be 
introduced: 

Feedback Diophantine equations:  Calculate (G0, H0, F0) with F0 of minimum degree: 

 * * *
0 0+ =c q cn r fD G F AA B Q A D  (3.16) 

 * * *
0 0− =c r cn q fD H F BA A R A D  (3.17) 

Implied equation:  Multiplying (3.16) by BAr and (3.17) by AAq and adding the equations obtain: 

* * *
0 0( ) ( )+ = +c r q cn cn fD G BA H AA B Q B A R A D  

and after division by *
cD   obtain: 

 0 0+ =r q c fG BA H AA D D  (3.18) 

Measurement noise equation:   

 * * * * *
0 0 0 0+ =c f n q cn n n rD D X Y A A B Q C C A  (3.19) 

The terms in the cost-optimization problem may now be considered, substituting from the above 
polynomial equations. Substituting from the Diophantine equations (3.16) and (3.17): 

 0 0 0 0
* * * * *

0
( ) ( )

Φ
= + − +fp

q n qc f c c f

G F X Y
AA A AY Y D D D

 (3.20) 

Considering now the term Y MYc f , writing C C Cd n0 0
1

0= − , obtain : 
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 0

0 0( )
=

+
c f n

c f
w d n

D D C
Y MY

AA AC BC  
(3.21) 

The first squared term in (3.8), using (3.21) now becomes: 

 
*

0 0 0 0 0 0 0 0
* * * *

0 0

[ ( ) ( )] ( )
( )

fp c f n r d n f
c f

w d nc f c f

D D C G X A A AC BC Y F D
Y MY

AA AC BCY Y D D

Φ − − + −
− = +

+
 (3.22) 

Substituting from the implied Diophantine equation: 

*
0 0 0 0 0 0 0 0 0 0

* * * *
0 0 0

[( ) ( ) ] ( )
( )

fp n q r n n r d f
c f

n w d nc f c f

H A A X A B C G A X A A C Y F D
Y MY

A A AC BCY Y D D

Φ + − − −
− = +

+
 (3.23) 

This cost term expression may be written in the form: 

 1 1* *
fp

c f
c f

Y MY T T
Y Y

+ −Φ
− = +  (3.24) 

where the term within the square brackets in (3.23) denoted by T1
+ .   This term is stable, since Aw  is 

Hurwitz and the closed-loop characteristic polynomial 0 0( )c d nAC BCρ = +  is required to be strictly 
Hurwitz for Jmin < ∞ .  The final term in (3.23) is  strictly unstable since Dc

*  is strictly non-Hurwitz. 

4.0 COST FUNCTION MINIMIZATION AND PARAMETRIC OPTIMIZATION  

Given the simplification of terms in the cost-function presented above the cost minimization procedure 
may be followed (Grimble and Johnson, 1988 [31]).  Note that the cost- function (3.8) may be written, 
using (3.24) as: 

 J
j

T T T T ds
D

= z + + ++ − + −1
2 1 1 1 1 0π

{( )( ) }* Φ  (4.1) 

From the Residue theorem the integrals of the cross-terms T T T T1 1 1 1
+ − − +* *,  can be shown to be zero.  This 

result follows because * *
1 1 1 1T T ds T T ds+ − − += −∫ ∫ but the term *

1 1T T− + is analytic for all s in the left half 

plane so that the sum of the residues obtained in calculating *
1 1T T ds− +∫  is zero.   

Note that this result still applies if the function *
1 1T T− + contains poles on the jω axis, since they can be 

avoided by the D contour, using small semi-circular detours in the left-half plane.  These semi-circles are 
centred on these poles and do not contribute in the limiting case as the radius tends to zero. Also observe 
that the term containing *

1 1T T− +  could lead to an infinite cost should such terms be present.  However, 
these may not be present, since the optimal control may be chosen so that they cancel.  The practical case 
when this arises is when the error weighting includes an integrator Aq(s) = s.  When the controller 
denominator C0d(s) includes integral action the Aq polynomial cancels throughout the term.  The 
consequence is that the criterion can have a finite minimum, even though certain cost function terms 
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include j axis poles. The cost-function therefore simplifies as: 

 
J

j
T T T T ds

D
= z + ++ + − −1

2 1 1 1 1 0π
{( ) }* * Φ  (4.2) 

Since the terms Tj
− and Φ0  are independent of the controller, the criterion J is minimised when the first 

term involving T1
+  is minimized.    However, if the feedback controller C0 has a restricted structure then it 

is unlikely that T1
+  can be set to zero.  It follows that to minimize the cost-function the first term in (4.2) 

should be minimised, through the choice of C0, namely:  *
0 1 1

1 { }
2 D

J T T ds
jπ

+ += ∫                   (4.3) 

For a finite solution to this cost minimization problem to exist the T1
+  term must be asymptotically stable.  

Inspection of this term:    0 0 0 0 0 0 0 0
1

0 0 0

[( ) ( ) ]
( )

+ + − −
=

+
n q r n n r d

n w d n

H A A X A B C G A X A A C
T

A A AC BC
                  (4.4) 

reveals that all terms are asymptotically stable but the weighting Aq could include a j axis zero (Aq is only 
assumed to be Hurwitz).  However, it is assumed that although the structure of the controller 1

0 0 0n dC C C−=  
is limited, C0d will have zeros at the j axis zeros of the chosen weighting Aq.  Thus, such a zero will cancel 
and under the given assumptions T1

+  is asymptotically stable. 

Then the LQG controller of restricted structure may be calculated from a simple direct optimization 
problem. First compute the filtering and control spectral factors Df  and Dc (strictly Hurwitz due to the 
system description) using: 

 * * * * *
f f d d n n p pD D EE C C C C C C= + + +  (4.5) 

 * * *
c c cn cnD D B Q B A R A= +  (4.6) 

The following regulating Diophantine equations must then be solved for (G0, H0, F0), with F0 of 
minimum degree: 

            * * *
0 0+ =c q cn r fD G F AA B Q A D             (4.7) 

 * * *
0 0− =c r cn q fD H F BA A R A D  (4.8) 

and the following measurement noise Diophantine equation must be solved for (X0, Y0), with Y0 of 

smallest degree:    * * * * *
0 0 0 0+ =c f n q cn n n rD D X Y A A B Q C C A         (4.9) 

The optimal controller 1
0 0 0n dC C C−=  must then be found to minimize the following component in the cost-

function term: 0 1 1
1 { ( ) ( )}

2
J T j T j dω ω ω

π

∞

−∞

+ += −∫  (4.10) 
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where 0 0 0 0 0 0 0 0
1

0 0 0

[( ) ( ) ]
( )

+ + − −
=

+
n q r n n r d

n q r d n

H A A X A B C G A X A A C
T

A A A AC BC
 

If the controller has a specified limited structure the minimum of the cost term J0min will be non-zero. For 
an unconstrained solution the minimum is achieved when T1 0+ =  and the minimum of J0 (denoted J0min) 
is zero. It has been explained in Theorem 3.1, that the computation of the optimal feedback controller C0 
reduces to minimization of the term J0. 

It is clear from (4.4) that T1
+ can be written in the form: T C L C L C L C Ln d n d1 0 1 0 2 0 3 0 4

+ = − +b g b g/  (4.11) 

where C C Cn d0 0 0= /  has a specified structure which can be as expressed below; 

Reduced order:    C s
c c s c s

c c s c s
n n np

p

d d dv
v0

0 1

0 1
( )

...

...
=

+ + +

+ + +
 

where v p≥  is less than the order of the system (plus weightings) 

Lead lag:    C s c c s c c s
c c s c c s

n n n n

d d d d
0

0 1 2 3

0 1 2 3
( ) ( )( )

( )( )
=

+ +
+ +

 

PID:     C s k k s k s0 0 1 2( ) /= + +  

The assumption must be made that a stabilising control law exists for the assumed controller structure. 
Note that the controller structure should be consistent with the choice of error weighting, in the sense that, 
if Aq includes a j axis zero, then the controller denominator C0d(s) should also include such a zero. The 
solution of this optimisation problem may be obtained using the following results. Assume, for example, 
that C0 has a modified PID structure of the form: 

 C k k s k s s0 0 1 2 1= + + +( / ) ( / ( ))τ  (4.12) 

so that the numerator : C k s s k s k sn0 0 1 2
21 1= + + + +( ) ( )τ τ  (4.13) 

and the denominator : C s sd0 1= +( )τ  (4.14) 

Let the superscripts r and i denote the real and imaginary parts of a complex function, so that 
C C jCn n

r
n

i
0 0 0= +  and C C jCd d

r
d

i
0 0 0= + . The controller numerator term may be split into frequency 

dependent components, through comparison with (4.13): 

 C j k k k j k kn0 0
2

1 2
2

0 1( ) ( )ω ω τ ω ω ωτ= − + − + +  (4.15) 

and C j k k k C j k kn
r

n
i

0 0
2

1 2
2

0 0 1( ) ( )ω ω τ ω ω ω ωτ= − + − = +and  (4.16) 

Similarly, for the denominator term: C j jd0
2( )ω ω τ ω= − +          (4.17) 
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and hence C jd
r
0

2( )ω ω τ= −       and     C jd
i
0 ( )ω ω=  (4.18) 

If the solution of the optimization problem is to be found by iteration, the denominator term in T1
+  can be 

assumed to be known and the minimisation can then be performed on the numerator (linear terms). Thus, 
to set up this problem let, T C L C Ln n d n1 0 1 0 2

+ = −  

where  L L C L C Ln n d1 1 0 3 0 4= +/ ( )         and       L L C L C Ln n d2 2 0 3 0 4= +/ ( )   (4.19) 

Substituting from (4.11) and (4.19). 

 1 0 1 0 1 0 2 0 2 0 1 0 1 0 2 0 2( )r r i i r r i i i r r i r i i r
n n n n d n d n n n n n d n d nT C L C L C L C L j C L C L C L C L+ = − − + + + − −   

and after substitution from (4.16) and (4.18) obtain 

( ) ( )
( )

2 2
0 1 1 1 1 1 1 1 1 1

1 2 2 2 2
2 1 1 2 2 2 2

( ) ( )

( )

r i r i r i r i
n n n n n n n n

r i r i i r
n n n n n n

k L L j L L k L L j L L
T

k L j L L L j L L

ω τ ω ω ω τ ωτ ωτ

ω ω ω τ ω ω τ ω
+

⎧ ⎫− − + − + − + +⎪ ⎪= ⎨ ⎬
+ − − + + + −⎪ ⎪⎩ ⎭

 

The real and imaginary part of T1
+  may therefore be written as: T T jTr i

1 1 1
+ + += +   and it follows that, 

T T Tr i
1

2
1

2
1

2+ + += +e j e j .  
Write a vector form of the above equations as: 

T
T

F
k
k
k

L Fx L
r

i
1

1

0

1

2

+

+

L
NMM
O
QPP

=
L

N
MMM

O

Q
PPP

− = − , 

where 

F L L L L L
L L L L L

n
r

n
i

n
r

n
i

n
r

n
r

n
i

n
r

n
i

n
i( ) ( ) ( )

( ) ( )
ω

ω ωτ ωτ ω
ω ωτ ωτ ω

=
− + − −

− + −

L
NMM

O
QPP

1 1 1 1
2

1

1 1 1 1
2

1
 and L L L

L L
n
i

n
r

n
r

n
i( ) ( )

ω
ω ωτ
ω ω τ

=
− +

−

L
NMM

O
QPP

2 2

2
2

2
 

The cost-function can be optimised directly but a simple iterative solution can be obtained if the integral is 
approximated (Yukitomo et al 1998 [33])  by a summation with a sufficient number of frequency points 
{ , ,..., }ω ω ω1 2 N .    The optimisation can then be performed by minimising the sum of squares at each of 
the frequency points. The minimization of the cost term J0 is therefore required where, 

 J Fx L Fx L b Ax b Ax
k

N T T
0

1
= ∑ − − = − −

=
( ) ( ) ( ) ( )  (4.20) 

where A
F

F
b

L

L
x

k
k
kN N

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

=
L

N
MMM

O

Q
PPP

( )

( )
,

( )

( )
,

ω

ω

ω

ω

1 1 0

1

2

 (4.21) 

Assuming the matrix A AT is non-singular the least squares optimal solution (Noble 1969 [34]) follows as: 
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 x A A A bT T= −( ) 1  (4.22) 

Lemma 4.1 : Restricted Structure LQG Controller Solution Properties 
The characteristic polynomial which determines stability and the implied equation are given as: 

 ρc d nAC BC= +0 0   

 0 0+ =q r c fAA H BA G D D  (4.23) 

The minimum value of the cost-function, with controller of restricted structure, is given as: 

 J
j

T T T T ds
D

min
* *{ }= z + ++ + − −1

2 1 1 1 1 0π
Φ  

 
* * *

0 0 0 0*
min 1 1 0* *

( ) ( )1 { }
2

f f

D c c f f

Y F D Y F D
J T T ds

j D D D Dπ
+ + − −

= + + Φ∫  (4.24) 

Proof: The implied equation (4.23) follows from (4.7) and (4.8) by multiplying (4.7) by BAr and  (4.8) by 
AAq, and adding.   

4.1 DESIGN AND ROBUSTNESS IMPROVEMENT 

The LQG controller should be designed in such a way that it is consistent with the restricted controller 
structure of interest.  For example, Aq should approximate a differentiator if near integral action is 
required. In fact the assumption made in deriving Theorem 3.1 was that the controller structure is 
compatible with the choice of error weighting and if 1/Aq includes a j axis pole then this will be included 
in the chosen controller.  In fact the usual situation will be that the designer decides the controller should 
include integral action and the weighting (1/Aq) will be chosen as an integrator.  The control weighting 
1/Ar is not so critical but if for example, a PID structure is to be used, then the point at which the 
differential (lead term) comes in can help to determine the Ar weighting. Clearly, there is no point in 
designing an LQG controller which has an ideal response, in some sense, but cannot be approximated by 
the chosen controller structure.  Thus, the weightings should be selected so that the closed-loop properties 
are satisfactory but taking into consideration the limitations of the controller structure required. The basic 
concept proposed is straightforward. That is, in the region of the unity gain crossover frequency for the 
open loop system, or the phase margin frequency, the distance |1+WC0| should normally be maximised. 
This requires the sensitivity to be minimized, particularly in this sensitive region. By costing the 
sensitivity directly a mechanism is provided to improve robustness (Horowitz 1979 [35]) but there are 
some subtleties to address: 

• The weighting Pc needs to be increased from zero where performance is presumably maximized (the 
LQG cost is optimized) up to a level where robustness is adequate and performance still acceptable. 

• If pure sensitivity costing is required Pc could cancel the combined noise dynamics *
ff f fY YΦ =  which 

is unrealistic.  The alternative is to make the model 1
p pW A C−=  large, relative to the other noise 

terms and also a constant ( pC Aρ=  say) and this will introduce a fictitious stochastic term affecting 
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the noise and disturbance rejection, and reference tracking, properties. The size of the scalar ρ also 
therefore involves a compromise. 

• The weighting and frequency shaping effects are only important in the decade above and a little below 
the crossover frequency referred to. The shaping might therefore be introduced by a weighting that 
approximates an ideal window function but this increases the order of the weighting term. 

The above design choices and trade-offs detract from the approach but the prize is quite important and 
worthy of the effort. That is, the provision of a tuning variable, or variables, in a cost index where the 
robustness properties of an optimal controller can be manipulated and traded against 
performance/stochastic properties. 

4.2 APPLICATIONS OF RS TECHNIQUE FOR MIMO SYSTEMS 

Although the theory and the derivation of the control law presented in the previous sections assumed for 
simplicity a single-input, single-output system, similar results can also be obtained in the multivariable 
case. The restricted-structure controller design problem then becomes particularly interesting since it can 
be considered from a number of viewpoints. 

First and most obvious application is optimal tuning / benchmarking of the existing controller. In the case 
of an r×m multivariable plant, the controller transfer-function matrix is of size m×r, however only a few 
possible feedback connections between outputs and controls are probably used. In fact, the most common 
situation is a square system with as many inputs as outputs, controlled by a multi-loop (decentralized) 
controller – which is often a set of SISO PID or PI controllers. By specifying the required control structure 
to be the actual structure, it is possible to obtain “optimal” parameters for the existing controller, in terms 
of the given cost function. 

Another use of the technique may be in I/O pairing. For example, in a 3x3 MIMO system, the following 
multi-loop PID control configurations are possible: 

)
PID

A PID
PID

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦   

)
PID

B PID
PID

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦   

)
PID

C PID
PID

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

)
PID

D PID
PID

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦   

)
PID

E PID
PID

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦   

)
PID

F PID
PID

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦  

The problem is the “best” choice of input/output pairs for a multi-loop control system. Methods such as 
Relative Gain Array are widely used in industry, however they take into account only steady-state 
information. On the other hand, pre-calculating the values of the cost function for all possible multi-loop 
configurations will determine the best “dynamic” pairing. 

Finally, by computing benchmark figures corresponding to all possible controller configurations, with off-
diagonal elements, it is possible to determine the potential benefits resulting from the introduction of 
additional loops to the system. If this turns out to be greater than the cost of installation, wiring, 
maintenance etc., the optimal tuning parameters are then available.  

5.0 ROBUST CONTROL DESIGN EXAMPLE 

To illustrate the effect of the robustness weighting element and the fictitious robustness signal {p(t)} a 
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simple example is considered. The system models may be listed as: 

Coprime system model: 

0
2 2

0 0 0

1000( 2)( 6)
( 0.7)( 3.9)( 100)( 2 )ξω ω

+ +
= =

+ + + + +
B s sW
A s s s s s

 

where 0.1ξ =  and 0 10ω = . Also write 

 0 0

0 0
= =

B UBW
A A U

   where   U0 = (s+3.2)s 

Disturbance model:   2 2
0 0

1000
( 100)( 2 )( 3.2)ξω ω

= =
+ + + +

d
d

CW
A s s s s s

 

where,  1000( 0.7)( 3.9)= + +dC s s  

Reference model :   2 2
0 0

1
( 2 )ξω ω

= =
+ +r

EW
A s s s

 

where  ( 0.7)( 3.9)( 3.2)( 100)= + + + +E s s s s  

Noise model:    0.1
( 100)

= =
+

n
n

CW
A s

 

where  2 2
0 00.1( 0.7)( 3.9)( 2 )( 3.2)ξω ω= + + + + +nC s s s s s s  

Fictitious robustness signal:  
( 100)

ρ
= =

+
p

p
C

W
A s

 

Cost Function Weightings 

The cost function weightings may be defined as: 6 6
(0.01 1)( 0.01 1)
( 10 )( 10 )− −

+ − +
=

+ − +c
s sQ

s s
 

(10 1)( 10 1)= + − +cR s s  and 1 6 6
(0.01 1)( 0.01 1)
( 10 )( 10 )

ρ − −
+ − +

=
+ − +c

s sP
s s

 

Results 
The frequency responses of the different system models are shown in Fig. 2. The system is low pass with a 
resonant subsystem and the disturbance model includes an integrator.  The measurement noise model only 
rolls off at high frequencies. Consider first the full order optimal case and the use of a large 1000ρ = , 
then as 1ρ  varies the unit step responses of the closed loop system are as shown in Fig. 3.  This represents 
the case where there is a large fictitious disturbance model Wp but where the robustness weighting ρ  
varies between 0 to 1000.   The faster responses occur as ρ  increases, since the effect is related to that 
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when Qc increases.  The corresponding closed-loop frequency responses are shown in Fig. 3. 

 

Figure 2:  Bode Frequency Responses for the System, Disturbance and Noise 

 

 

Figure 3:  Closed Loop System Unit Step Responses for Fixed ρ = 1000 and Varying Weighting ρ1 
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Figure 4: Bode Diagram of Closed Loop Responses for ρ = 1000 and Changing Value of ρ1 

Restricted structure controller 

The unit step responses are compared in Fig. 5 for the full-order and restricted controller designs. The case 
0ρ =  and 1 10ρ =  was considered and the corresponding controller and sensitivity-function frequency 

responses are shown in Figs 6 and 7.  The restricted structure control is particularly good from an 
overshoot perspective.   However, one reason is the higher controller gains at high frequencies for the 
restricted structure control law.  The computed controllers were obtained as: 

Optimal Full-Order Controller: 

2

0 6 2

2

0.493426( 0.2205695)( 0.7)( 3.199631)( 3.9)( 1.999939 99.99969)( 100)( )
( 0.000001)( 1.09342 10 )( 1.008371)( 3.866217)( 14.81793 65.05414)

( 7.520861 166.0202)

s s s s s s sC s
s s s s s s

s s

−
+ + + + + + +

=
+ + × + + + +

× + +

 

Optimal Restricted Structure: 

2

0
0.0641248 0.3587621 1.208584( )

(0.2 1)
− − +

=
+

s sC s
s s

 

The step responses shown in Fig. 8 are for the case 1 100ρ ρ= = .  The results are much faster and the 
restricted structure design is again good, relative to the full-order solution. 
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Figure 5:  Comparison of Closed-Loop Unit Step Responses of Full and RS Control Designs 

 

Figure 6: Bode Comparison of Controller Frequency Responses 
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Figure 7: Bode Comparison of Sensitivity Function Frequency Responses 

 

Figure 8:  Comparison of Unit Step Responses for Full-Order and RS Control Designs 

Example Conclusions 
The example reveals that the robustness weighting terms and the fictitious robust costing signal {p(t)} 
certainly affects the overshoots which represent a measure of robustness, both on closed-loop frequency 
and time responses.  The tuning variables ρ  and 1ρ  affect the robustness of this minimum-phase open 
loop stable system in much the way expected.  However, the alteration of robustness properties is not a 
straightforward matter, since any values of ρ  and 1ρ  above zero will cause a measure of sub-optimality 
in stochastic (LQG cost) terms. The most surprising results were the very good results obtained for the 
restricted structure control designs. The explanation was the higher high frequency gains employed that 
reduced the peaks on the sensitivity function frequency responses. In this problem changes in the 
measurement noise model again did not have a large effect.  However, results that were not shown were 
obtained for a coloured measurement noise model with a peak in the low frequency range.  In this case the 
controller gains are significantly reduced and this slows the speed of response of the system and the 
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overshoot increases markedly. 

6.0 NONLINEAR GENERALIZED MINIMUM VARIANCE CONTROL 

The system description is of restricted generality and is carefully chosen so that simple results are 
obtained.  The plant itself is nonlinear and may be time-varying and have quite a general form.  However, 
the reference and disturbance signals are assumed to have linear time-invariant model representations.  
This is not very restrictive, since in many applications the models for the disturbance and reference signals 
are only LTI approximations. 

The system is shown in Fig. 9 and includes the nonlinear plant model and the linear reference/disturbance 
models.  There is no loss of generality in assuming that the zero mean white noise sources { ( )}tζ  and 
{ ( )}tξ  have identity covariance matrices (Atherton 1982 [36]).  There is no requirement to specify the 
distribution of the noise sources, since it will be shown that the special structure of the system leads to a 
prediction equation, which is dependent upon the linear disturbance and reference models.  

6.1 System Models and Signals 
The polynomial matrix system models, for the ( r m× ) multivariable system, shown in Fig. 9,  may now 
be introduced.  Part of the system is represented by linear and part by nonlinear models. The linear  
disturbance, reference and plant output subsystem models have the left-coprime polynomial matrix 
representation: 

 1 1 1 1 1 1 1 1
0 0 0[ ( ), ( ),  ( )]   ( )[ ( ), ( ), ( )]d r k d r kW z W z W z A z C z E z B z− − − − − − − −=  (5.1) 

The polynomial matrix system models, for the system, may be listed as follows: 

Disturbance model: 1 1 1 1( )  ( ) ( )d dW z A z C z− − − −=   

Reference model: 1 1 1 1( )  ( ) ( )r rW z A z E z− − − −=  (5.2) 

Without loss of generality these models have the common denominator polynomial matrix 1( ).A z−  Note 
that the arguments of the polynomial matrices are often omitted for simplicity.  The subsystem associated 
with the plant inputs is assumed to be unstructured (need not have known equations) and of the form: 

Nonlinear time-varying plant model: ( )( ) ( )( )k ku t D u t=W W  (5.3) 

 where kD  denotes  a diagonal matrix: { }1 2 r-k -k -k diag z ,z ,..., zkD = of the common delay elements in the 

respective output signal paths. 

One of the main strengths of the method is that no model is required for the nonlinear 
subsystem: ( )( )ku tW .  It is necessary to assume this is stable and to have some means of computing the 
output from this block but a traditional equation based model is not essential. That is, look-up tables may 
be employed, old Fortran code may be available that enables the output to be computed for a given input, 
or as in current research, a fuzzy neural model, may be fitted to real plant data.  These methods, which do 
not involve a conventional model, can provide all that is needed to compute the control law. Most of the 
results do not need a more detailed breakdown of the plant model structure.  However, in the later 
sections, to show the system can be stabilised, it will be assumed that any unstable modes of the plant are 
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included in a stable/unstable linear time invariant block of polynomial matrix form: -1
0 0k kW A B= .  Thus, 

the delay free plant model term ( )( ) ( )( )0 1 k k ku t W u t=W W  and hence the total plant model may be written 
as: 

 ( )( ) ( )0 1 ( )k k ku t D W u t=W W  (5.4) 

The signals shown in the system model of Fig. 9 may be listed as follows: 

Error signal: ( ) ( ) ( )e t r t y t= −  (5.5) 

Plant output:  ( ) ( ) ( )( )y t d t u t= + W  (5.6) 

Reference:  ( ) ( )rr t W tω=  (5.7) 

Disturbance signal:  ( ) ( )dd t W tξ=  (5.8) 

Combined signal:  ( ) ( ) ( )f t r t d t= −  (5.9) 

The power spectrum for the combined reference and disturbance model can be computed, noting these are 
linear subsystems, using: 

 * *
ff rr dd r r d dФ Ф Ф W W W W= + = +   (5.10) 

and the generalized spectral-factor Yf  may be computed using:   

 *
f f ffY Y Ф=   ((5.11) 

where the system models ensure Yf  is strictly minimum phase.  Note that a measurement noise model has 
not been included to simplify the equations.  This is appropriate so long as the control cost-function 
weighting, introduced in the next section, ensures controller roll-off at high frequencies. 

6.2 Optimal Nonlinear Generalized Minimum Variance (NGMV) Problem  
 The optimal NGMV control problem involves the minimisation of the variance of the signal 

( ){ }0 tφ  in Fig. 9.  This signal involves a ( )r m×  dynamic cost function weighting matrix: 1( )cP z−  on the 

error signal, represented by linear polynomial matrices as: 1
c cd cnP P P−= .  It also includes an m-square, 

nonlinear dynamic control signal costing operator term: ( )( )c .u tF   The choice of dynamic weightings is 
critical to the design and typically cP  is low-pass and  cF  is a high-pass transfer.  The signal:  

 ( ) ( )( )0 ( ) c ct P e t u tφ = + F  (5.12) 

is to be minimized in a variance sense, so that the cost index to be minimised: 

 ( ) ( ){ } ( ) ( ){ }{ }0 0 0 0
T TJ E t t E trace t tφ φ φ φ= =   (5.13) 
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where { }E ⋅ denotes the expectation operator.  Note that in some applications the signal ( )0 tφ may 
represent an inferred output.  That is, this signal can represent the output from a subsystem that cannot be 
measured directly. 

 

Pc 

Wr 

Wd 

r  e u + 
- 

y 

d 

W + 
+ 

m 

Fc 
Disturbance 
model 

Control 
weighting 

Reference 

Error 
weighting 

+ + ξ  

C0 

Nonlinear 
plant Controller

0 c cP e uφ = +F

ω  

 

Figure 9:   Single Degree of Freedom Closed Loop Feedback Control System for the Nonlinear 
Plant (signal φ0 is dependent on the weightings shown dotted) 

If the smallest of the delays in each output channel of the plant are of magnitudes:{ }1 2, ,..., rk k k , 

respectively, this implies the control at time t affects the thj output at least jk  steps later.  For this reason 
the control signal costing can be defined to have the form: 

 ( )( ) ( )( )c ck ku t D u t=F F  (5.14) 

Typically this will be a linear operator but it may also be chosen to be nonlinear to cancel the plant input 
nonlinearities in appropriate cases.  The control weighting operator ckF  is assumed to be full rank and 
invertible. 

Theorem 6.1:    NGMV Optimal Controller 
 The NGMV optimal controller to minimize the variance of the weighted error and control signals 
may be computed from the following equations.  The assumption is made that the nonlinear possibly time-
varying operator ( )c k ckP −W F has a stable causal inverse, due to the choice of weighting operators cP  
and cF .   The smallest degree solution (G0 ,F0), with respect to F0,  must be computed from the polynomial 
matrix equation:   0 0p cd k cf fA P F D G P D+ =        (5.15) 

where the left coprime polynomial matrices pfA  and cfP  satisfy: 1 1
p cf cnA P P A− −=  (5.16) 
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and the spectral factor fY  is written in the polynomial matrix form: 1 .f fY A D−=  

Optimal control signal:  The optimal NGMV control action can be computed as:  

 ( ) ( ) ( )( )( )
1 11 1

0 0f k ck p cd fu t F Y A P G Y e t
− −− −= −W F  (5.17) 

Proof:  The proof involves collecting results in the next section. ■ 

Remarks: 

• The following solution is simplified if kD  and the weighting cP  and spectral factor fY  commute.  

This assumption is certainly valid if the delay elements are the same in each channel k
kD z I−=  or if 

cP  and fY  are diagonal transfers, which is also reasonable for many applications. 

• The class of problems considered are those for which a solution to the Diophantine equation can be 
found where the row degrees of 1

0F ( )z−  are less than the delay path magnitudes { }1 2, ,..., rk k k  and 
this is ensured under the conditions listed in the previous remark. 

• A further consequence of the above assumption is that the matrices: 1
0 fF Y − , 1

0 fG Y −  and kD commute, 
which is a property employed later in the proof. 

6.3 Solution of the Nonlinear Optimal Control Problem 
 A simple optimisation argument is used in the following. The signal to be minimised is shown to 
consist of both linear and nonlinear terms. However, the stochastic part of the problem involves linear 
models so that a prediction equation may easily be derived. This enables the signal to be written in terms 
of future and past white noise related terms. The optimal causal solution is therefore that which sets the 
past terms to zero. This will include some of the nonlinear control input dependent terms and the optimal 
control follows. 

  Consider the minimisation of the signal ( ){ }0 ,tφ  where ( )0 tφ  represents the weighted sum of 
error and control signals and is the same dimension as the input signal.  This fictitious or inferred output is 
defined as: ( ) ( ) ( )( )0 c ct P e t u tφ = + F  ,   where cP  is assumed to be a linear and cF  can be a linear or 
nonlinear operator.   Now from the equations in §6.1: e r y r d u= − = − − W  and hence, 

 ( ) ( ) ( )0 ( )c c c c ct P r d u u P r d P uφ = − − + = − − −W F W F  (5.18) 

Notice this last term involves non-linear operators and the notation implies that the signal: 

( ) ( )( ) ( )( )c c c cP u P u t u t− = −W F W F  

Assumption:    An important assumption will now be recalled that does not affect stability properties 
but may cause a degree of sub-optimality in disturbance rejection. That is, the model for the signal 
f r d= −  is assumed to be linear.  In fact, disturbance models are often determined by nonlinear power 

spectrum models but are approximated well by a linear system driven by white noise.  A typical example 
arises in ship positioning applications where the Pierson-Moskowitz spectrum is used to model wave 
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motion but where this is normally approximated by a lightly damped second-order linear system. 

Spectral Factor: Recall the signal: εff Y= , where Yf  is a linear transfer and ( )ε t  denotes a zero 

mean white noise signal of identity covariance matrix.  The operator fY  follows from a standard spectral-
factor computation, given the disturbance dW  and the reference rW  signal models (Grimble, 1994 [18]).  
The fY  may be assumed to have the following polynomial matrix form:   1 f fY A D−=    where from the 

system description fD  is strictly Schur.  Thence, from the first term in (5.18): 

( ) -1 1ε εc c c f cd cn fP r d P f P Y P P A D−− = = =  

Now introduce the left coprime polynomial matrices pA  and cfP  satisfying:   1 1
cn p cfP A A P− −=  

then ( ) 1
εc p cd cf fP f A P P D

−
=  and from equation (5.15) the weighted error and control signals have the 

form:    ( ) ( )
-1

0 εp cd cf f c cA P P D P uφ = − −W F       (5.19) 

6.3.1 Diophantine equation 

 Introduce the following linear Diophantine equation, to expand the combined disturbance and 
reference model into two groups of terms:  0 0p cd k cf fA P F D G P D+ =      (5.20) 

where the solution for ( )0 0,F G  satisfies the row j degree of  0 .jF k<   Hence, 

 ( ) ( )-1 1
0 0c f p cd cf f p cd kP Y A P P D F A P D G

−
= = +  (5.21) 

The first polynomial matrix includes delay elements in the jth channel, up to and including 1jkz− +  and the 
last term involves delay elements greater than or equal to jk  in each output channel. Substituting into 
(5.19), obtain the inferred output signal: 

 ( ) ( )-1
0 0 0ε εp cd k c cF A P D G P uφ = + − −W F  (5.22) 

but  ( )1 1 1ε ( )f f fY f Y e u Y r d− − −= = + = −W   and hence substituting in (5.22): 

 ( ) ( )( )-1 -11 1
0 0 0 0ε p cd k f p cd k f c cF A P D G Y e A P D G Y P uφ − −= + − − + −W W F  

 ( ) ( ) ( )( )-1 -11 1
0 0 0ε p cd k f p cd k p cd c f f cF A P D G Y e A P D G A P P Y Y u− −= + + − +W F  (5.23) 

but 1
p cd c f p cn f cf fA P P Y A P A D P D−= =  and hence (5.21) gives:   0 0k cf f p cdD G P D A P F− = −  

These last two equations then give the desired weighted error and control signal as: 
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 ( ) ( )-1 1 1
0 0 0 0ε p cd k f c fF A P D G Y e F Y uφ − −= + + −F W  (5.24) 

The control signal at time t affects the jth system output at time t+kj and hence the control signal costing 
term cF  should include a delay of jk  steps, so that .c k ckD=F F   Moreover, since in general the control 
signal costing is required on each signal channel, the ckF  weighting may be defined to be of full rank and 
invertible.  Equation (5.24) may be simplified further if p cdA P  and kD  and 1

0 fF Y −  and kD commute, 

which is certainly the case under the assumptions on cP  and fY  discussed after the Theorem at the end of 
the last section.  From (5.24) the inferred or fictitious output may be written as: 

 ( ) ( ) ( ) ( )( ) ( ) ( )( )11 1
0 0 0 0ε ( )k ck f k p cd ft F t D u t F Y u t A P G Y e tφ

−− −= + − +F W   (5.25) 

6.3.2 Optimisation 

To compute the optimal control signal inspect the form of the weighted error and control signals in 
equation (5.25).  Since the row degrees of 0F are required to be less than jk  (the magnitude of the delay in 
the jth channel) the jth row of the first term is dependent upon the values of the white noise signal 
components: ( )ε t ,…, ( )ε 1jt k− + .  The remaining terms in the expression for the jth row are all delayed 

by at least jk  steps and therefore depend upon the earlier values: ( )ε t k− , ( )ε 1 ,jt k− − ….it follows that 

the first and the remaining terms are statistically independent.  The first term on the right of (5.25) is 
independent of the control action and the smallest variance is achieved when the remaining terms are set to 
zero.  The optimal control signal must therefore satisfy: 

 ( )( ) ( ) ( )( )11 1 1
0 0( ) ck f k p cd fu t F Y u t A P G Y e t

−− − −= −F W  (5.26) 

and this may be represented in the block diagram of Fig. 10. 

Recall the signal ( )0 c c c cP e u P r y uφ = + = − +F F  involves a weighting cF  that normally has a negative 
sign to ensure 0φ  is minimized by a signal u  having negative feedback.  The forward path gain of the 
controller block is therefore usually positive. 
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Figure 10:  Control Signal Generation and Controller Modules 

6.3.3 Alternative Expression for the Control Signal 

 An alternative expression for the control signal may be found that is useful for stability analysis.  
From equation (5.26), recalling that 1

0 fF Y −  and kD , are assumed to commute: 

( ) ( )( ) ( ) ( ) ( ) ( )( )( )( )
( )( )( )( ) ( ) ( ) ( )( )

11 1 1
0 0

1 11 1 1 1
0 0 0

ck f k p cd f

ck f p cd k f k p cd f

u t F Y u t A P G Y r t d t u t

F Y A P D G Y u t A P G Y r t d t

−− − −

− −− − − −

= − − −

⎛ ⎞= + − −⎜ ⎟
⎝ ⎠

F W W

F W
 

Note from the Diophantine equation (5.20) the first term: 

( ) ( ) ( ) ( )1 1 11 1 1 1
0 0 0 0f p cd k f p cd p cd k f p cd cf cd cnF Y A P D G Y A P A P F D G Y A P P A P P

− − −− − − −+ = + = =  

Thence, the expression for the control signal simplifies as:  

( ) ( )( ) ( ) ( ) ( )( )( )11 1
0ck c k p cd fu t P u t A P G Y r t d t

−− −= − −F W  

or since:   ( ) ( ) ( ) ( )( )1 1
0ck c k p cd fP u A P G Y r t d t

− −− = − −F W  

 

 ( ) ( ) ( ) ( ) ( )( )1 1 1
0c k ck p cd fu t P A P G Y r t d t

− − −= − −W F  (5.27) 

where the existence of a stable causal inverse of the nonlinear operator ( )c k ckP −W F  is assumed.  This 

latter result may also be confirmed by applying the optimisation argument directly to (5.24). 

 Note that the nonlinear operator may be computed, assuming the existence of the inverse of the 
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control weighting .ckF   For example, if the signal ( )tψ  is defined as:  

( ) ( ) ( )( ) ( )( )c k ck c k ckt P u P u t u tψ = − = −W F W F  

then the control signal:   ( ) ( )( ) ( )( )1
ck c ku t P u t tψ−= −F W  

but this cannot be used for computations, since the right-hand side also includes u  at time .t  

 To avoid this problem in the computation of ( )u t  the operator ( )c k ckP −W F  must be split into 
two parts involving a term without a delay 0N  and a term that depends upon past values of the control 
action 1N .  That is,  ( ) ( ) ( )0 1( ) ( ) ( )c k ckt P u u t u t= − = +ψ W F N N    (5.28) 

and the control signal can then be computed as: 

 ( ) ( ) ( )( )1
0 1( )u t t u tψ−= −N N  (5.29) 

Since the weightings may be chosen freely the pulse response operator 0N can be assumed to be full rank 

and the inverse exists.  This may be computed from ( ) ,c k cku P u= −N W F  if a model is available, by 

setting 1 0,z− =  so that:   1 10 0 0
( )c k ckz z
P− −= =

= = −N N W F   and 1 0 .= −N N N   The results suggest 

the method of implementing the inverse operator shown in Fig. 11. 

 

kW  

ckF  

1
0

−N

cP

Plant and weighting operators 

Inverse operator 

+

- -

u u
+ψ

1N
 

Figure 11:  Nonlinear Time-Varying Operator ( )c k ckP −W F  and its Inverse 

Limiting Case:     Note that in the limiting case, for a square system, when 0ck →F  the optimal 

control signal (5.27) becomes:    ( ) ( ) ( ) ( ) ( )( )11 1
min var 0c k p cd fu t P A P G Y r t d t

−− −= −W    and clearly the 

minimum variance control for the nonlinear system includes the stable inverse of the plant model, when 
one exists.  The nonlinear terms are cancelled in this somewhat unrealistic case.  In practice control 
costing must be employed to ensure unrealistic high gains do not occur, and hence pure minimum variance 
control is not normally an option.  However, the link to this well known controller is valuable to provide 
confidence in the solution. 
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6.3.4 Existence of the Stable Nonlinear Operator Inverse 

 The above result (5.27) indicates a necessary condition for optimality is that the operator 
( )c k ckP −W F must have a stable inverse.  For the case of linear systems the requirement is that the 
operator is strictly minimum-phase.  This reveals that one of the restrictions on the choice of cost 
weightings is that this stability condition be fulfilled. 

 The simple solution obtained to this problem depends upon the existence of the stable inverse of 
the operator ( ).c k ckP −W F   An important question is whether sensible choices of the weightings will lead 
to this condition.  To show this covers a very wide class of systems consider the case where ckF is linear 

and negative so that: ck kF= −F .    Then obtain: ( ) ( )1
c k k k k c kP F u F F P I u−+ = +W W and note that the term 

( )1
k c kI F P−+ W  represents the return-difference operator for a system with feedback controller 

1 .c k cK F P−=   This interesting equivalence is important, since the stability of the inverse operator is clearly 
related to the stability of the feedback loop.  It will be shown later that this feedback loop actually arises in 
a nonlinear version of the Smith Predictor. 

Starting Point for Weighting Selection:    Consider the delay free plant kW  and assume a PID 
controller exists cK  to stabilize the closed loop system.  Then a starting point for weighting choice, that 
will ensure ( )c k kP F+W  is stably invertible, is 1 .k c cF P K− =    That is, when the optimal controller is to be 
applied to an existing system it is very likely that a PID controller that stabilizes the plant is available, and 
will therefore provide a starting point for weighting selection.   To demonstrate that such a weighting 
selection 

is reasonable consider the scalar case and let a controller cK  have the form:  

 ( ) ( ) ( )( ) ( )1 1 2 11
0 2 0 1 2 0 2 21 1 2 1

1c
kK k k z k k k k k z k z z
z

− − − −
−= + + − = + + − + + −

−
 (5.30) 

and assume the PID gains are positive numbers, with small derivative gain.  Then it is simple to confirm 
that if 1kF =  the cnP  term is minimum phase and has real zeros.  The 1

c cd cnP P P−=  term then includes 
integral action at low frequency and a lead term at high frequency, which implies the resulting optimal 
controller should have similar characteristics to the PID controller involving high gain at both low and 
high frequencies.  This suggests that some modification will be necessary to limit the gain at high 
frequencies.  Using the equivalence to a filtered PID controller leads to weightings of similar 
characteristics but with a limited gain at high frequencies.  Recall the above argument was aimed at 
showing there are likely to be weighting choices that are reasonable and lead to a stable inverse for the 
operator ( ) ,c k ckP −W F  under the above very reasonable assumption. 

Realising the Controller and Minimum Cost 

The controller expression may also be expressed using the inverse of the nonlinear operator (from (5.26)) 

as: ( ) ( ) ( )( )( )
1 11 1

0 0f k ck p cd fu t F Y A P G Y e t
− −− −= −W F  (5.31) 

The controller has the structure shown in Fig. 12, or equivalently, expanding the nonlinear compensator 
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block, it corresponds with the controller structure of Fig. 10. 

( ) 11
0 f k ckF Y

−− −W F  

Plant 
Output 

Disturbance

  - 
 + 

 
   e    r 

   y 
    + 
   + 

Controller Subsystem 

u 

W  ( ) 1 1
0 fp cdA P G Y

− −  

Reference 

Figure 12:  Equivalent Single Degree of Freedom Nonlinear Controller Structure 

Minimum Cost: 

The minimum cost is clearly due to the first (time-invariant linear) term in (5.24).  That is, using Parseval’s 

theorem: ( )( ) ( )( ){ } ( ) ( ){ }*1 1
min 0 0 0 0

1ε ε  trace 
2

T dzJ E F t F t F z F z
j z

− −= = ∫π |z|=1
                (5.32) 

It is interesting that this expression for the minimum cost, which can provide a benchmark cost for 
nonlinear controller design, depends only on the reference and disturbance signal models that are LTI.  
This arises because the control action effectively removes the nonlinear plant model from the prediction of 
the signal { }( ) ,tφ whose variance is being minimised. 

Minimum Variance and Special Cases 

To verify the solution in the special case when the control weighting cF  tends to zero, a modification to 
the proof is required.  From equation (5.26) the optimal control signal must satisfy:  

( )( ) ( ) ( )11 1
0 0f k p cd fF Y u t A P G Y e t

−− −=W  

For a square system, where the inverse of kW  exists, the minimum variance control, for a nonlinear, 

possibly time-varying, process:   ( ) ( )( )( )1 1 1 1 1
0 0k f cd p fu t Y F P A G Y e t− − − − −= W     (5.33) 

and if the system is scalar, then for nonlinear systems: ( ) ( )( )( )1 1 1 1
0 0k cdu t F P A G e t− − − −= W  

If now the plant is assumed linear then the plant operator kW  may be written in polynomial form as: 
1

0k kW A B−=  and the scalar minimum variance control: ( )
0 0

( )o

k cd

Gu t e t
B F P

=   (5.34) 

This is the stabilizing control if the process is minimum phase.  This is a reminder that the GMV control 
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law, with control costing, is only stabilizing when the control weighting is chosen appropriately.  There 
are also many applications where the inclusion of the inverse of the plant model in the control law would 
suggest unrealistically high gains and poor behaviour to noise and uncertainties.  However, this special 
case is relatively simple and there are some applications like the winding mechanisms for coal mines, 
where inverse static characteristics are employed routinely. 

Relationship to the Smith Predictor 

The optimal controller can be expressed in a similar form to that of a Smith Predictor.  This provides a 
new nonlinear version of the Smith Predictor.  Moreover, it provides an optimal method of tuning and 
provides optimal stochastic disturbance rejection and tracking properties.  However, the introduction of 
this structure also limits the application of the solution on open-loop unstable systems.  That is, although 
the structure illustrates a useful link between the new solution and the Smith time delay compensator, it 
also has the same disadvantage, that it may only be used on open-loop stable systems.  Nevertheless the 
structure is intuitively reasonable and should be valuable in applications.  This Nonlinear Smith Predictor 
will now be derived. 

Observe that the system in Fig. 10 may be redrawn as in Fig. 13.  The changes are made to the linear 
subsystems by adding and subtracting equivalent terms.   

1
ck

−F  

1
0 f

F Y−

1 1
0( )

fp cd kA P G Y D− −
 

Plant 

Compensator 

- 

_ 
1 1

0( )
fp cdA P G Y− −

 y + 
+ + 

+ 
_ + 

r u 

+

kD

km

 
 

d 

W  

 

_ 

kW

Reference 

 

Figure 13:     Modification to the Controller Structure Shown Dotted 

Now combine the two linear inner loop blocks, by first defining the signal:    ( ) ( )( )k km t u t= W    as 

follows:   ( )( ) ( ) ( )1 11 1 1
0 0 0 0f p cd f k k p cd p cd k f kF Y A P G Y D m A P A P F D G Y m

− −− − −+ = +  

but substituting from (5.20), assuming kD  and 0G  commute: 

 ( )( )11 1
0 0f p cd f k k c kF Y A P G Y D m P m

−− −+ =   (5.35) 

The system may therefore be redrawn as shown in Fig. 14 where the control action clearly satisfies 
equation (5.27).  Now observe that the compensator may be rearranged, as shown in Fig. 15.  This latter 
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structure is essential if cP  includes an integrator, which introduces integral action.  That is, 1
cdP−  must be 

placed in the inner error channel, rather than in individual blocks as in Fig. 14. 
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Figure 14:  Nonlinear Smith Predictor Compensator and Internal Model Structure 

The structure in Fig. 14 is intuitively reasonable and easy to explain.  Note from the control signal u  to 
the feedback signal p  that the transfer is null when the model k kD W  matches the plant model.  It follows 
that the control action, due to reference signal r  changes, is not due to feedback but involves the open-
loop stable compensator involving the block 1 1

0p fA G Y− −  and the inner nonlinear feedback loop.  This inner-

loop has the weightings  1
ck cP−F  acting like an inner-loop controller.  If these weightings are chosen to be 

of the usual form it will represent a filtered PID controller.  Thus, the control action due to the reference 
changes will be due to the cascade of these two blocks. 

It should be emphasized that the choice of the weightings to be equal to a PID control law is only a 
starting point for design, since stability is easier to achieve.  However, the control weighting can have an 
additional lead term (or alternatively a high frequency lag term may be added to the error cP  weighting.  
The high frequency characteristics of the optimal controller will then have more realistic roll off.  Under 
the given assumptions the resulting system is stable.  This follows because the plant is stable, the inner-
loop is stable (due to choice of weightings) and there are only stable terms in the input block. 
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Figure 15:   Nonlinear Smith Predictor Compensator and Internal Model Structure (
0

ψ ψ= cdP ) 

Design Issues  

In general, it seems relatively easy to obtain an NGMV design very close (and normally better) than the 
existing PID performance, and then use the proposed parameterization (which is only one of a number of 
possible choices) to achieve further improvement.  The approach is not in competition with PID of course.  
There is every reason to use the simplest possible controller that will do the job. The NGMV was only 
compared with the PID design for this low order problem.  It has the advantage that if the plant is high 
order, a stabilising PID control law may not exist 

As the controller includes the nonlinear model of the plant, it should be robust against any changes of the 
operating point, whereas any linear controller may have problems regulating across the whole operating 
range.   The above results do, of course, correspond to no (or little) plant/model mismatch. The choice of 
cost weightings to optimise robustness will be the subject of future research. 

Some of the other areas where further investigation is warranted, that relate to design and applications, 
may be listed as: 

• A slight generalization is to define a completely nonlinear objective function, so that the error 
weighting is nonlinear .cP  

• Constraints on input actuators, like mechanical bending limits, can be allowed for using barrier 
functions, which may be absorbed into the plant model as a further nonlinearity. 

• Integral action can be included by defining the error weighting to include an integrator.  In this case 
the way in which the optimal control deals with windup should be analyzed. 

• The inclusion of different model structures/types for the plant model W , like a neural network, to 
provide a learning capability. 

• A low order solution may be obtained using a restricted structure control design philosophy. 
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7.0 NONLINEAR GMV CONTROL PROBLEM 

The computation of a NGMV controller is illustrated below in the design of a scalar nonlinear discrete-
time dynamic system, given in the following nonlinear state-space form: 

2 2
1 2

1 2
1 2

1

2

1

( ) ( )

( ) ( )( 1) ( )
1 ( )

( 1) ( )
( ) ( 4)

x t x t

x t x tx t u t
x t

x t e u t
y t x t

−

⋅
+ = +

+

+ = +
= −  

Let the initial state x(0) = 0 (the stable equilibrium point of the autonomous system). Observe that the 
output y(t) includes a transport delay of k = 4 samples. The open-loop system response to a series of steps 
is shown in Fig. 16, and the nonlinearity present in the system is clearly evident from the wide range of 
responses. 
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Figure 16:   Open-loop Plant Responses for Operating Regions 

For the nonlinear GMV controller design, the linear reference model has been defined as: 
( )10.05 1 0.99rW z−= − , and is the stochastic analogue of a near step reference changes.  The model of the 

additive linear disturbance acting on the system output was chosen as: ( )10.05 1 0.8dW z−= − .  Assume the 

plant is controlled by the nominal stabilizing PID controller, denoted 1
1( )C z− , with filtered derivative 

term:     
1

1 1 1

(1 )11
(1 ) (1 )

d

i d

T zC K
T z zτ

−

− −

⎛ ⎞−
= + +⎜ ⎟− −⎝ ⎠

   and with the tuning parameters: K=0.1, Ti=4s, Td=1s and 

τd=0.5. As explained in section 4.4, the nominal dynamic weightings for the NGMV design may be 
defined in terms of this controller as: 4

1,c cP C F z−= = − .   The Bode plots of these weightings are shown 
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in Fig. 17. 

 

Figure 17:   Frequency Responses of the Dynamic Weightings (nominal design) 

The reference tracking of a sequence of steps for the two nominal controllers is shown in Fig. 18, and the 
corresponding output and control signal variances are collected in Table 1. Note that the nominal PID 
tuning parameters have only been found to stabilize the delay-free plant and are not ‘optimized’ in any 
sense. However, this controller is useful in that it can provide initial design parameters for the NGMV 
controller that will stabilize the plant, i.e. make the nonlinear operator stable and invertible. As can be seen 
from Fig. 18 and Table 1, the performance of the initial nonlinear controller design is close to that of the 
original PID, although it is normally more robust to the changes of the operating point (this can be seen for 
the set-point equal to zero). The stochastic performance of the nonlinear controller is also slightly better.  
The importance of this result is not the controller produced but that it provides a painless way to obtain an 
initial choice of cost weightings. 
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Figure 18:   Time Responses: Nominal PID and NGMV Controllers 

Table 1: Stochastic Performance: Nominal PID and NGMV Controllers 

Op. point Controller Var[e] Var[u] Var[phi] 
PID 0.01662 0.00117 0.00082 3 NGMV 0.01672 0.00104 0.00082 
PID 0.01568 0.00046 0.00054 0 NGMV 0.01180 0.00025 0.00038 
PID 0.01122 0.00168 0.00051 -1 NGMV 0.01117 0.00166 0.00052 
PID 0.00729 0.00115 0.00035 -3 NGMV 0.00726 0.00115 0.00033 

 

The nominal NGMV design will now be modified by changing the control weighting. Parameterize the 
control weighting as: 1(1 )ckF zρ γ −= − − , where ρ is a positive scalar and γ is a value from 0 to 1, to 
introduce a lead term to the weighting. Note that a lead term on the control signal weighting is normally 
useful to reduce the high frequency gain of the controller. For the nominal design: ρ=1 and γ=0.  The Bode 
plots for some combinations of these two parameters are shown in Fig. 19. 
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Figure 19:   Frequency Responses of the Dynamic Cost Function Weightings 
Pc (solid), Fc with γ=0 (dashed), Fc with ρ=1 (dotted) 

The parameterization involves two tuning parameters and is meant to simplify the design task. For 
example, decreasing the value of ρ (reducing the control weighting) leads to a faster response and a more 
violent control action.  This can also be seen from the stochastic performance results (with added 
disturbance noise). Interestingly, there is very little change in the error variance. On the other hand, while 
decreasing ρ to a value of 0.35 leads to some undesirable oscillatory behaviour, adding a lead term helps 
resolve this problem.  The Figure 12 and Table 2 present the simulation results for different values of 
ρ (γ=0).   Αs expected increasing ρ results in a slower step response characteristic, providing a simple 
tuning mechanism. 
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Figure 20:   Time Responses for Weighting Parameters: ρ = 0.5, 0.7, 1, 2; γ = 0 

Table 2:   Stochastic Performance for Weighting Parameters: ρ = 0.5, 0.7, 1, 2; γ = 0 

Op. 
point 

rho Var[e] Var[u] Var[phi] 

0.5 0.01528 0.00334 0.00263 
0.7 0.01515 0.00199 0.00162 
1 0.01512 0.00120 0.00131 3 

2 0.01518 0.00049 0.00169 
0.5 0.01330 0.00095 0.00233 
0.7 0.01324 0.00059 0.00126 
1 0.01322 0.00035 0.00077 0 

2 0.01312 0.00013 0.00055 
0.5 0.01042 0.00345 0.00352 
0.7 0.01017 0.00201 0.00171 
1 0.01015 0.00117 0.00127 -1 

2 0.01023 0.00063 0.00214 
0.5 0.00604 0.00182 0.00258 
0.7 0.00593 0.00129 0.00140 
1 0.00595 0.00089 0.00104 -3 

2 0.00617 0.00042 0.00141 
 

For comparison, the nominal PID controller has been retuned and its performance compared with that of 
the NGMV controller with design parameters ρ=0.5 and γ=0.3.  A set of PID parameters were obtained 
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that were close to the NGMV design in terms of the speed of response, but the plant nonlinearity still 
caused some oscillatory behaviour in the PID control design responses.  

In the last experiment, the plant time delay was increased from 4 to 10 samples. For the controller design, 
the same weightings were used as before but the NGMV controller obtained was of course different, 
reflecting the change in the time-delay. Then the Nonlinear Control Design Blockset of Matlab was used 
to find the optimal PID parameters, given the desired response. The boundary constraints were relaxed 
until a feasible set of parameters was found. However, it was not possible to tune the PID controller for 
satisfactory responses, across the whole operating range. 

The Fig. 21 shows the response of the NGMV controller and of two of the PID controllers obtained. The 
dynamic response of the NGMV controller is very close to the original one, despite the significant increase 
in the time delay. It was not possible to obtain, for the PID controllers, both fast transient responses at the 
operating point = 3 and no oscillatory behaviour at the operating point = 0.  The PID controller did not 
have time delay compensation, so it might be argued that it is not a fair comparison, nevertheless it 
demonstrates a potential of the NGMV controller to control highly nonlinear plants with significant time 
delays. Moreover, although the link to a Smith Predictor time delay compensator was made, the approach 
has the significant advantage over the Smith Predictor, that it provides a stochastic control design 
procedure, whereas the Smith Predictor only provides a structure (there is no guidance how to design the 
controller for say disturbance rejection). 
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Figure 21:    Time Responses for Time Delay Increased from 4 to 10 Samples 
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8.0 CONCLUSIONS 
 
The robustness of full-order and restricted structure optimal control problems was considered for 
continuous-time linear systems.  The emphasis was on the improvement of robustness by adding a 
sensitivity costing term in the cost index and by introducing a fictitious disturbance model Wp.  The effect 
of measurement noise was also investigated and this was introduced in the feedback system model.  The 
robustness weighting acts directly on the sensitivity function and may improve robustness margins but 
other properties will probably deteriorate like the measurement noise rejection properties.   If robustness is 
more important than stochastic properties then attention would turn to H∞ cost minimization and many of 
the ideas presented above would apply (Grimble, 1986 [30]). However, such an approach is readily 
embedded in the usual mixed sensitivity H∞ design problem. 

A relatively simple controller for nonlinear multivariable and possibly time-varying systems was also 
introduced.  The closed loop stability of the system was shown to depend upon the existence of a stable 
inverse for a particular loop operator.  This operator depended upon the cost weighting definitions.  It was 
shown that a possible starting point for weighting selection was through the relationship to a PID 
controller.  That is, if it is assumed that PID controller exists, to stabilize the delay free plant model kW , 
then this guaranteed the existence of at least one set of control weightings that would ensure closed-loop 
stability. 

A major advantage of the NGMV solution is that the only knowledge of the nonlinear plant model that is 
required, is the ability to compute an output  for a given control input sequence.  Such a model, assumed 
stable, could be in Fortran or C code, or might even include look up tables or a neural network.  The 
remaining computations concern the linear disturbance and reference signal models and knowledge of the 
transport delay element of length k.  These are representative linear approximations and experience 
suggests they will be adequate so long as they capture the dominant frequency response behaviour.  It 
follows that such a controller can be calculated without the usual model information required in traditional 
model based control law design. 

The relationship to the Smith Predictor was discussed for two reasons.  Firstly the extension of Smith’s 
ideas to the nonlinear problem is interesting and provides a practical method of implementing these 
controllers, when the plant is open-loop stable.  Secondly the physical structure is useful to provide an 
intuitive understanding of the operation and properties of the proposed Nonlinear GMV controller. The 
structure in Fig. 14, that describes the Nonlinear Smith Predictor, is particularly illuminating. 
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